## EN 16430

### New EN standard for trench heating/cooling



# Thermal outputs and cooling capacities finally comparable!

Until now there has been no uniform standard for determining the performance of heating/cooling trenches. The EN 16430 valid as from March 2015 provides common standards which apply with immediate effect.

DIN EN 16430-1

DIN EN 16430-1

DIN EN 16430-1

Gebläseunterstützte Heizkörper, Konvektoren und Unterflurkonvektoren –
Teil 1: Technische Spezifikationen und Anforderungen;
Deutsche Fassung EN 16430-1:2014
Fan assisted radiators, convectors and trench convectors –
Part 1: Technical specifications and requirements;
German version EN 16430-1:2014
Radialeura sasistées praventilateur, convecteurs et convecteurs de caniveaux –

Partie 1: Spécifications techniques et exigences; Version allemande EN 16430-1:2014

The EN 16430 defines details for measuring performance data for heating/cooling trenches under real-life conditions and puts an end to uncertainties in the design and in comparing performance data of different manufacturers.

#### Thermal outputs and cooling capacities

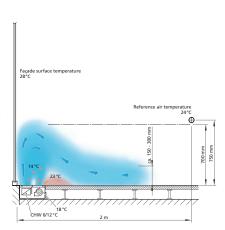
The standard defines details for measuring performance data for heating/cooling trenches based on EN 442. Three parts of EN 16430 specify the measurements. Part 1 ▶ Technical specifications and requirements

Part 2 > Test method and rating for thermal output

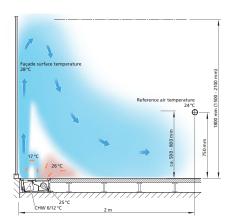
Part 3 ▶ Test method and rating for cooling capacity

The EN 16430 part 3 considers the special requirements for cooling mode. The reference air temperature is measured in the centre of the test booth at a distance of 2 m from the façade at a height of 0.75 m above FFL. The reference air temperature must not be mixed up with the entering air temperature into the coil which may deviate due to the inevitable short-cut between leaving air and entering air.




Test set-up, cooling test

#### Comparison of air flow patterns


The diagram shows the major differences of the air flow of short-cut optimised and non short-cut optimised heating/cooling trenches in cooling mode. With the short-circuit optimised model the air at the façade rises significantly higher, blends and penetrates deeper into the room at a higher temperature. The result is a more even temperature distribution and higher comfort in the occupied zone.

Heating/cooling trenches with a high short-cut percentage only provide part of the performance to the room. Performance data based on the entering air temperature are especially misleading as this can be significantly lower than the reference air temperature (room air temperature).

The development and design of the Katherm HK have been optimised to minimise the short-cut as far as technically possible. All performance data refer to the reference air temperature measured at a distance of 2 m from the façade, the area in the room occupied by people.



Non short-cut optimised air outlet



Short-cut optimised air outlet

Kampmann has been measuring and publishing the thermal outputs and cooling capacities of convectors in compliance with this standard! The following trench heaters have been designed according to EN 16430 and therefore correspond to the technical standard:

- Katherm NKKatherm OK
- Katherm HK



### Please keep in mind when selecting trench heating/cooling:

- 1. The performance data of trench heating/cooling is to be measured according to EN 16430. This especially applies to the cooling capacity.
  - Only then can you be sure that the required design data will be achieved in your projects.

#### Manufacturer A (catalogue extract)

- Thermal output tested in compliance with EN 442 or 470445199910 resp.
- Cooling capacity following EN 14518

#### Manufacturer B (catalogue extract)

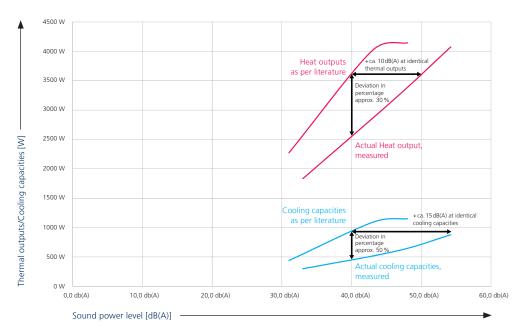
#### Details on the cooling capacity diagrams

The total cooling capacity in condensing mode may deviate within the admissible standard tolerances due to the simplified reference to the medium heat exchanger undertemperature.

An air inlet temperature range of 22-30 °C at a relative humidity of 50 % is assumed in this case.

#### Manufacturer C (catalogue extract)

Calculation Cooling output  $P_K$  (deviating from  $\Delta T$  = 10 K)


For undertemperatures  $\Delta T$  deviating from  $\Delta T = 10$  K the cooling output is calculated as follow

$$P_{K} = P_{KN} \times \left[ \frac{\Delta T}{\Delta T_{n}} \right]^{n} \text{ oder } P_{K} = P_{KN} \times C_{K}$$

t<sub>1</sub> [°C] = CHW Flow t<sub>2</sub> [°C] = CHW Return  $t_2 = 18 \,{}^{\circ}\text{C}$  $t_r$  [°C] = Room temperature  $t_r$  = 27 °C p = 1013 hPa Ambient pressure Relative humidity  $\phi = 50 \%$ 

Details of different manufacturers on the calculation of cooling capacities

- 2. Fan-assisted heating/cooling trenches should always be dimensioned on the basis of the sound power data. A selection based on the fan speed or fan stage is not recommended.
  - > Only then it can be guaranteed that the necessary thermal outputs or cooling capacities will be reached within the sound level limits.

